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ABSTRACT: Zinc, copper, and iron ions are involved in
amyloid-beta (Aβ) deposition and stabilization in Alzheimer’s
disease (AD). Consequently, metal binding agents that prevent
metal-Aβ interaction and lead to the dissolution of Aβ deposits
have become well sought therapeutic and diagnostic targets.
However, direct intervention between diseases and metal
abnormalities has been challenging and is partially attributed to
the lack of a suitable agent to determine and modify metal
concentration and distribution in vivo. In the search of metal
ionophores, we have identified several promising chemical
entities by strategic fluorination of 8-hydroxyquinoline drugs, clioquinol, and PBT2. Compounds 15−17 and 28−30 showed
exceptional metal ionophore ability (6−40-fold increase of copper uptake and >2-fold increase of zinc uptake) and inhibition of
zinc induced Aβ oligomerization (EC50s < ∼5 μM). These compounds are suitable for further development as drug candidates
and/or positron emission tomography (PET) biomarkers if radiolabeled with 18F.
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Alzheimer’s disease (AD), a neurodegenerative disorder
that affects approximately 44 million people worldwide, is

the sixth leading cause of death with an estimated socio-
economic burden of more than $200 billion. There is no cure
for the debilitating disease with only few symptom-alleviating
treatments.1−4 Thus, understanding of disease etiology and
development of therapeutics and biomarkers for AD is urgently
needed.
AD is characterized by extracellular amyloid plaques

containing Cu and Zn, which is accompanied by neuronal Cu
deficiency and Zn dys-homeostasis.5−9 It is known that Zn and
Cu ions are involved in the Aβ deposition and stabilization and
that metal chelating agents can lead to the dissolution of Aβ
deposits by preventing metal−Aβ interaction.10−13 Therefore,
the metal hypothesis of AD has led to the search for diagnostic
and therapeutic agents that are able to modulate or redistribute
metal ions within the brain. A prototypical metal-chelating
drug, 5-chloro-7-iodo-quinolin-8-ol (clioquinol; CQ (11);
Chart 1), prevents Aβ toxicity. The metal ionophore activity
of CQ (11) promotes cellular Zn and Cu uptake, initiating
protective cell signaling events to degrade Aβ and prevent

toxicity.6,14 In a pilot phase II clinical trial, CQ (11) was well
tolerated and attenuated the rate of cognitive decline in AD
patients; however, further development was halted due to a
contaminant during the manufacturing process.15 A newer
generation metal chelator, PBT2 (5,7-dichloro-2-
((dimethylamino)methyl) 8-quinolinol; 18), has also shown
benefits in patients with Huntington’s disease and patients with
AD in phase II clinical trials.16,17

To identify a suitable metal chelator for AD drug
development, a radiopharmaceutical based on a metal chelator
would be useful to determine metal concentration and
distribution in the living brain by positron emission
tomography (PET) or single-photon emission computed
tomography (SPECT). Development of such agents would
also advance our understanding of AD etiology that are affected
by dysregulation of metal functions and may prove useful in
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monitoring therapeutic response and disease progression for
patients with AD. The first attempt to achieve this goal was
carried out with iodine-123 labeled CQ and evaluated as an
imaging marker in human subjects (Chart 1). Unfortunately,
radio-deiodination in vivo and low brain uptake in human
subjects precluded the use of this radiopharmaceutical for
further development.18,19 Our laboratory reported the first
analogous PET radiotracer labeled with fluorine-18 (18F, β+, t1/2
= 109.7 min) for this target, 2-[18F]fluoro-8-hydroxyquinoline
([18F]CABS13; Chart 1A), which demonstrated a significant
temporal difference in brain uptake and retention among a
transgenic mouse model of AD (APPswe/PSEN1dE9) compared
with wild-type control.20,21 However, PET imaging studies in
normal nonhuman primates revealed low brain uptake of the
radiotracer and fast metabolism, which may be attributed to
species differences.22 Notably, preliminary evaluations of other
PET radiotracers to probe the metal hypothesis of AD were
subsequently evaluated. Lim et al. recently reported two small
molecules, namely, N-(pyridin-2-ylmethy)aniline (L2-a) and
N1,N1-dimethyl-N4-(pyridin-2-ylmethyl)benzene-1,4-diamine
(L2-b), based on a hybrid design of CQ (11) and stilbene
derivatives (Chart 1A). These compounds modulated metal
induced Aβ aggregation and toxicity in vitro. In particular, L2-b
demonstrated the ability to dissolve Aβ aggregates from brain
tissue homogenates from AD patients.23 Scott et al. radio-
labeled compound L2-b with carbon-11 (11C, β+, t1/2 = 20.3
min) or 18F and performed a preliminary evaluation in healthy
nonhuman primates,24 and Donnelly et al. combined a
functionalized styrylpyridine group and copper-64 (64Cu, β+,
t1/2 = 12.7 h) labeled thiosemicarbazone to detect Aβ in vtiro in
post-mortem brain tissue of AD patients.25

The goal of present work is to synthesize a series of
fluorinated 8-hydroxyquinolines as metal selective chelators for
therapeutic applications and as potential PET imaging agents.
Our design strategy is based on lead compounds 8-
hydroxyquinoline (8HQ; 1), CQ (11), and PBT2 (18). We
expect to increase binding affinity, metal selectivity, and in vivo
stability by strategically placing functional groups, including
fluorine atom around hydroxyquinoline core, as well as design a
better chelating interaction with metals, i.e., Zn and Cu, by
increasing binding ability (Chart 1B). Two in vitro methods
were used to evaluate these new compounds. Ionophore
activity was assessed in cultured SH-SY5Y cells, a well-
established neuronal model system. Cells were treated with
each compound, and inductively coupled plasma mass
spectrometry (ICP-MS) was used to identify compounds that
promoted cellular uptake of Zn and Cu (Figures 1−3). While

the compounds were not expected to be Fe chelators, cellular
Fe uptake was also measured. Aggregation of Aβ oligomers was
assessed fluorometrically with 4,4′-dianilino-1,1′-binaphthyl-
5,5′-disulfonate (bis-ANS). The effective concentration that
reversed Aβ aggregation by 50% (EC50) was determined with
nonlinear regression analysis (Table 1 and Supporting
Information).
Herein we describe an array of candidate compounds that

showed superior binding affinity, metal selectivity and Cu and
Zn ionophore activity over the therapeutic drugs CQ (11) and
PBT2 (18). These promising compounds provide a candidate
pool for the development of drug candidates and/or PET
ligands. As shown in Chart 2, efforts were first focused on
fluorinated 8-hydroxyquinoline derivatives to improve the
ionophore ability. We discovered that the binding pocket was
sensitive to different heteroaromatic rings (compounds 2 and
3). We then systematically evaluated fluorine substituents
around the hydroxyquinoline because fluorine contribution to
the electron density of the heterocyclic ring is a function of its
position on 8HQ (1). CABS13 (compound 5) and compound
6 were inferior to 8HQ (1) in terms of Cu uptake, while
compounds 7−9 showed equal or superior Cu uptake (Figure
1). Neuronal Zn and Fe uptake were largely unaffected.
Modification of CQ was carried out in attempt to discover lead
candidate radiotracers, which can reveal higher brain uptake
than [123I]CQ.19 Therefore, we replaced labile iodine on CQ

Chart 1. Representative Metal Chelators and Radiolabeled
Derivatives for AD (A) and Design Strategy (B)

Figure 1. Ionophore assay of 8HQ derivatives. Dashed line indicates
control level. SH-SY5Y cells were treated with each compound (20
μM) for 6 h, and cellular metal levels were measured with ICP-MS.
Dashed line indicates control level.
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with other halides, such as fluoride, chloride, or bromide, at
various positions to improve the stability of the molecule due to
higher C−X (X = F, Cl or Br) bond energies (Chart 3). Among
six analogues screened, positional isomers 15−17 are of
particular interest because of improved Cu and Zn ionophore
activity (Figure 2).
Since PBT2 (18) is characterized as a monoprotic tridentate

ligand, we proposed several new molecular entities by changing
the nature of the coordination site or denticity to achieve better
metal binding affinity and selectivity toward Cu and Zn ions.
Specifically, substitution with chelating properties on the 2-
position of the pyridine ring would expect to increase the

interaction with metals, i.e., Zn or Cu, in brain. The change
from bidentate to tridentate, even tetradentate, could ensure
enhanced ionophore ability greater than that of CQ. Two
parallel approaches, namely, fluoroalkyl (compounds 23 and
24) and fluorotriazole (compounds 28−30) derivatives, were
prepared. As indicated in Scheme 1, compound 20 was first
protected with a Boc group, followed by SeO2 oxidation, to
yield aldehyde 21. After NaBH4 reduction and subsequent
alkylation with the corresponding fluoroalkyl tosylate, com-
pounds 23 and 24 with different aliphatic fluorine atom were
achieved in 16−18% yield. Three triazole derivatives were

Table 1. Reversal of Aggregation of Soluble Aβ Oligomers by
Fluorinated Hydroxyquinoline Derivativesa

Cpd. No. EC50 ± SD (μM) Cpd. No. EC50 ± SD (μM)

CABS13 (5) >120 15 5.2 ± 0.5
6 43.5 ± 4.4 16 3.7 ± 0.4
7 21.5 ± 15.9 17 2.5 ± 2.8
8 37.5 ± 10.1 PBT2 (18) 2.0 ± 0.3
9 14.0 ± 3.2 23 2.4 ± 0.4
10 15.4 ± 3.4 24 2.0 ± 0.4
CQ (11) 1.8 ± 0.4 28 2.3 ± 0.4
12 4.9 ± 1.8 29 4.5 ± 1.3
13 3.5 ± 0.6 30 2.8 ± 0.1
14 2.3 ± 0.4

aAggregation of Zn-induced Aβ oligomers was assessed fluorometri-
cally with bis-ANS. CQ and PBT2 were used as positive controls. EC50
± SD were determined with nonlinear regression analysis (Prism 6,
Graphpad). All compounds had an EC50 significantly lower than
CABS13, P < 0.01.

Chart 2. Structures of 8-Hydroxyquinolines and Related
Compounds

Chart 3. Structures of 8HQ Derivatives

Figure 2. Ionophore activity of CQ derivatives. SH-SY5Y cells treated
were treated with each compound (20 μM) for 6 h, and cellular metal
levels were measured with ICP-MS. Dashed line indicates control level.

Scheme 1. Synthesis of PBT2 derivativesa

aConditions: (a)Boc2O, DMAP, THF, 90%; (b) SeO2, 1,4-dioxane;
(c) NaBH4, then TFA, 80% from step b; (d) NaH, DMF, fluoroalkyl
tosylate, 16% (n = 1), 18% (n = 3); (e) CH3NH2, THF, 93% from step
b; (f) NaBH4, MeOH, 58%; (g) 3-bromopropyne, DIPEA, DMF, 33%;
(h) fluoroalkyl azide, CuSO4, Na ascorbate, THF/H2O, 45% (n = 1),
49% (n = 2), 39% (n = 3).
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accessed by a similar manner using Huisgen cycloaddition
(click chemistry) to give compounds 28−30 in 39−49% yields.
To our delight, fluorinated compound 24 exhibited similar
ionophore behavior compared to PBT2 (18). Compounds 28−
30 showed exceptional Cu uptake (10-fold increase for
compound 28, 16-fold increase for compound 29, and 8-fold
increase for compound 30) greater than that of PBT2 (18). For
Zn neuronal uptake, compounds 28−30 showed comparable
results to those of PBT2 (18) (Figure 3). While none of the

fluorinated compounds promoted Fe uptake in these assays, Fe
ionophore activity cannot be excluded. Importantly, the Cu and
Zn ionophore activity of several compounds was comparable to
the clinically relevant 8-hydroxyquinolines CQ (11) and PBT2
(18).
Fluorinated compounds were also evaluated for their ability

to reverse the aggregation of soluble Aβ oligomers in vitro
(Table 1 and Supporting Information). From our previous PET
imaging studies, [18F]CABS13 detects Aβ in vivo,20,25 but the
present study showed that this compound does not affect Aβ
aggregation in vitro and metal uptake. However, fluorinated 8-
hydroxyquinolines (Chart 2, compounds 6−10) improved anti
Aβ aggregation activities compared to CABS13 (compound 5).
Three fluorinated CQ analogues (Chart 3, compounds 12−14)
and another set of fluoro analogues (compounds 15−17) have
EC50 values similar to CQ in the range of 2.3−5.2 μM. PBT2
derivatives 23, 24, and 28−30 (EC50 = 2.0−4.5 μM) are also
excellent candidates. Compounds 28−30 may be regarded as
an improvement on PBT2, as they display improved Cu
ionophore activity while retaining similar Aβ disaggregation
activities.
In summary, we have synthesized an array of fluorinated

hydroxyquinolines based on the clinical CQ (11) and PBT2
(18) scaffolds. Several equipotent lead compounds, 15−17 and
28−30, identified from the ionophore and Aβ reversal assays
are worthy of further evaluation as potential therapeutics and/
or PET ligand development to probe the metal hypothesis of
AD.
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